

Design Issues in the Study of Rare Cancers

Rare Cancers Working Group Report

Isis S. Mikhail, MD, MPH, DrPH

Overview

- Goal: solicit input from NCI investigators on the need to study rare cancers
- This workshop focused on adult tumors
- Childhood cancers were outside of our mandate since the majority (~ 90%) of children with cancer are already enrolled in clinical trials

What is Rare?

-Incidence less than 15/100,000 cases

or

-Less than 40,000 cases per year in the US

Rare Cancers

		Annual Cases,	Deaths,	and Death Rates
•	Pancreas	31,860	31,270	98%
•	Esophagus	14,250	13,300	93%
•	Multiple myeloma	15,270	11,070	72%
•	Leukemia	33,440	23,300	70%
•	Brain	18,400	12,690	69%
•	Ovary	25,580	16,090	63%
•	Bones & joints	2,440	1,300	53%
•	Soft tissue (including h	eart) 8,680	3,660	42%
•	Uterine cervix	10,520	3,900	37%
•	Kidney & renal pelvis	35,710	12,480	35%
•	Ureter, other urinary or	gans 2,450	690	28%
•	Vulva	3,970	850	21%
•	Uterine corpus	40,320	7,090	18%
•	Hodgkin's disease	7,880	1,320	17%
•	Penis & other genital, n	nale 1,570	270	17%
•	Endocrine system	25,520	2,440	10%
•	Thyroid	23,600	1,460	6%
•	Testis	8,980	360	4%

⁻ ACS Estimates 2004

Why Study Rare Cancers?

- Some are highly lethal
- Some have rising rates (e.g. esophageal)
- May be informative about etiology of more common tumors
- Lower incidence tends to go with more heritability/familial (e.g. twin studies by N. Risch)
- Simpler etiology than common cancers
 - e.g. RB, angiosarcoma, clear cell carcinoma of vagina
 - May provide insight to more common and complex tumors
- Disproportionate in some ethnic groups (e.g. male breast cancer)
- YPLL from cancer at young age
- Total incidence of all rare cancers is substantial

Why Study Rare Tumors?

Ethical Issues

- Etiologic studies of rare tumors have been given less attention by the scientific community compared to more common cancers
- Rare tumors deserve to receive their share of research
- Patients afflicted with such cancers should not have to carry the burden of disease alone
- Sense of hope in the search for a cure

Rationale for First Study of a Rare Tumor

- Compare with study # 101 of a common tumor
- Higher probability of a "hit"

NATIONAL LANCER INSTITUTE

How to Study the Etiology of Rare Cancers?

- Gather data
 - Descriptive data from SEER
 - Existing cohorts
 - With and without biospecimens
 - Number of cases
 - Questionnaire data available?
 - Biospecimen availability?
 - Existing clinical trials of rare tumors

Study Design Options

Cohort Studies

- Value: studies of modest size using multiple existing cohorts
- Should be able to identify moderate to strong risk factors
 - Questionnaire based analyses
 - Biologic samples
- How to obtain access to questionnaire data and biologic samples?

Study Design Options

Clinical Trials

- Feasibility of adding etiology to treatment trials of rare diseases
 - Precedent: Childhood cancer
- Methodologic issues
 - Bias: e.g. cases in clinical trials may have worst prognosis
 - Yes, but ...
 - We cannot afford to be overly fastidious
 - Strong apparent risk factors are robust to small biases

Study Design Options

De novo Designs

- Why?
 - Follow-up hypotheses from cohort mining
 - Functional assays/phenotypes from samples, fresh tissue
 - Subgroups with molecular categorization
 - Integrate with studies of prognosis and treatment

Basic Design

- Study multiple kinds of rare tumors
- Hospital based
 - At major cancer centers
 - "that's where the money is"
- Common hospital or clinic controls
- Single questionnaire, biospecimen collection protocol
- Methodological challenges
 - Control selection
 - Surmountable

Building Infrastructure

- Building Partnerships
- Take advantage of GCRCs
- Supplemental funds to Cancer Centers to explore feasibility

General Suggestions

- Create common rare tumor protocol
- Collect baseline information on all rare cancers (e.g. pooling, data sharing)
- Banking samples
- Studies comparing higher rates in populations